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Abstract—Cognitive Radio Network (CRN) is regarded as a
promising way to address the increasing demand for wireless
channel resources. It solves the channel resource shortage prob-
lem by allowing a Secondary User (SU) to access the channel of
a Primary User (PU) when the channel is not occupied by the
PU. The latest FCC’s rule in May 2012 enforces database-driven
CRNs, in which an SU queries a database to obtain spectrum
availability information by submitting a location based query.
However, one concern about database-driven CRNs is that the
queries sent by SUs will inevitably leak the location information.

In this study, we identify a new kind of attack against location
privacy of database-drive CRNs. Instead of directly learning the
SUs’ locations from their queries, our discovered attacks can
infer an SU’s location through his used channels. We propose
Spectrum Utilization based Location Inferring Algorithm that
enables the attacker to geo-locate an SU. To thwart location
privacy leaking from query process, we propose a novel Private
Spectrum Availability Information Retrieval scheme that utilizes
a blind factor to hide the location of the SU. To defend against the
discovered attack, we propose a novel prediction based Private
Channel Utilization protocol that reduces the possibilities of
location privacy leaking by choosing the most stable channels.
We implement our attacks and the protection schemes on the
data extracted from Google Earth Coverage Maps released by
FCC. Experiment results show that the proposed protocols can
significantly improve the location privacy.

Keywords – Location Privacy, database-driven Cognitive
Radio Network, Private Information Retrieval

I. INTRODUCTION

Over the last decade, unlicensed channels has been used by
prevalent wireless technologies (e.g., Wi-Fi and Bluetooth).
However, unlicensed channels only form a small subset of
the channel resources that are available to people today. As
wireless technologies emerge, unlicensed channels become
over crowded. Cognitive Radio Networks (CRNs) thus have
been proposed to address the increasing demand for wire-
less channels and support emerging wireless technologies.
CRNs classify two types of users: Primary Users (PUs)
and Secondary User (SUs). PUs are licensed users that are
pre-assigned with certain channels to operate, and SUs are
unlicensed users that are allowed to use PUs’ channels only
when the channel are not occupied by the PU.

Spectrum sensing and white space database are two typ-
ical ways to determine which channels are locally available
for reuse by the SUs. In spectrum sensing method, an SU
determines whether or not a channel is available by listening

to the channel and capturing the PU’s signal. In white space
database, an SU queries a central database to obtain Spectrum
Availability Information (SAI) at his location. The latest
FCC’s rule [1] in May 2012 eliminates spectrum sensing as
a requisite for cognitive radio devices. Instead, it adopts the
white space database method and enforces database-driven
CRNs, in which all fixed or mobile cognitive radio devices are
required to query a database to determine available channels.
FCC has designated nine entities (e.g. Comsearch, Google
Inc.) as TV bands device database administrators. Recently,
two TV Bands database systems designed by Koos Technical
Services Inc [2] and Telecordia Technologies Inc [3], have
been approved by FCC for operation.

Though database-driven CRNs are regarded as a promising
approach by following the way of traditional location-based
services (LBS), they suffer from privacy threats, especially on
the aspect of location privacy. Queries sent by an SU contains
his location information. By tracing an SU’s database queries,
the attacker can geo-locate the SU, and cause other serious
privacy leaking if the SU’s sensitive data is closely correlated
to his location.

Existing approaches for protecting a user’s location infor-
mation in traditional location based services (e.g., k-anonymity
approach, or collaborative location privacy protection [4]–[6])
face the challenge of lacking of trusted server or incurring
unnecessary cost in a collaborative privacy protection . What’s
more important, in database driven CRN, as a necessary
step for spectrum access, the user should register his using
spectrum in the database. In this study, we will show a new
kind of location privacy attack, Spectrum Utilization based
Location Inferring (SULI) attack, which allows an attacker
to infer the location of an SU from the channels he has used.
This attack arises from the fact that an SU can gain access to a
channel if and only if the presence of the PU is not detected in
this location (e.g., out of the coverage of PU). In other words,
any event that an SU can or cannot access to a channel with the
presence of the PU will leak his location information partially.
Such correlation between the spectrum utilization information
of an SU and his physical location could be exploited to geo-
locate the SU by intersecting the coverage of different channels
that the SU has used.

To address the aforementioned challenges, we propose a
Privacy Preserving Spectrum Retrieval and Utilization archi-
tecture for database-driven CRNs, coined as PriSpectrum.



PriSpectrum is comprised of two modules, Private Spectrum
Availability Information Retrieval (PSAIR) and Private Chan-
nel Utilization (PCU). PSAIR enables an SU to query the
database without leaking the SU’s location information. The
main idea of PSAIR is to utilize a blind factor to hide
the location of the SU in the queries. To further mitigate
location privacy leaking in spectrum utilization phase, we
propose a novel Private Channel Utilization protocol, which
defends against SULI attack by always choosing the most
stable channel, i.e., the channel with the minimum number of
channel switch events. By choosing the most stable channel,
PCU dramatically increases the difficulty for the attacker to
infer the SU’s location. PSAIR and PCU together form a
protection layer that can preserve the location privacy of SUs
in database-driven CRN.

The contributions of this paper are summarized as below:
1) We identify a new kind of attack against location privacy

of database-drive CRNs. Instead of directly learning
the SU’s location from queries, our discovered attacks
can infer an SU’s location from the channels that have
already been used by the SU.

2) We propose PriSpectrum, a novel protection scheme that
can thwart location privacy leaking in database-driven
CRNs. PriSpectrum consists of two modules: PSAIR
and PCU. The former module deals with privacy leaking
from query process, and the latter module combats the
new attacks identified in this paper.

3) We perform comprehensive experiments to validate the
discovered attack, and evaluate the performance of
PriSpectrum. Our experiments are conducted on top of
real-world dataset released by FCC on TVFool [7]. The
experiment results demonstrate the impact of the discov-
ered attack, as well as the effectiveness and efficiency
of PriSpectrum.

The rest of the paper is organized as follows. Section II
gives system model and explains our assumptions. Sections III
and IV present the new attack and our proposed PriSpectrum
protocol, respectively. Section V discusses the experimental
evaluation. Section VI concludes this paper.

II. BACKGROUND AND THREAT MODEL

A. Overview of Database Query Process

Database-driven CRNs typically consist of four compo-
nents: PUs, SUs, Base Station (BS), and Database (DB). BS
is a radio infrastructure that provides wireless interface and
connects SUs’ and the database. The BS covered region coined
as C is divided into n × n square cells, each cell is coined
as cij , i, j ∈ {1, 2, . . . , n}, where i is the row index j is the
column index. The SAI of the whole BS covered region is
stored in the database, which we denote as a n×n matrixM.
The spectrum availability information (SAI) of the cell cij is
coined as mij . We assume there are K PUs around the BS
covered region, which are coined as PUk, k ∈ {1, . . . ,K},
and the channel of PUk is coined as chk. If PUk is using
its channel chk, we call that PUk’s state is ON, otherwise,

PUk’s state is OFF. The database query process takes three
phases: (1) Query Phase: an SU sends a query that contains
the location cij of the SU to the BS, who then forwards the
query to the DB; (2) Retrieval Phase: the DB retrieves mij ,
and sends it back to the SU via BS; (3) Commitment Phase:
upon receiving the response from the database, the SU chooses
an available channel chk based on mij to operate on, and
registers the chosen channel chk in DB. When the state of PUk

changes from OFF to ON, the database will notify the SUs
that are using chk, and they will launch a new database query
process. If chk is still available for the SU when PUk returns,
the SU will not change his channel, otherwise he must find
another available channel to avoid interference to the PUk.

B. Threat Model and Assumptions

The attacker’s goal is to find the location of a target SU
whose position is relatively fixed during a certain interval.
Similar to the conventional research on protecting the users’
location privacy in LBS, we assume the attacker is a curi-
ous whitespace administrator, who collects the locations of
customers to make marketing and sales strategies, or external
attacker, who harvests the locations of wireless users and sells
them for profit. The knowledge of the attackers in this paper
are considered to be: 1) the complete communication content
between SU and white space DB; or 2) the spectrum utilization
information of SUs. Knowing at least one of them will enable
the attacker to launch the attack. Note that, an external attacker
could obtain spectrum utilization information of a specific SU
by simply receiving wireless signals from channels that are
being used by SUs and PUs.

We consider a general curious-but-honest model, which
means the server will never change the data or query results
maliciously. We also assume the attacker has sufficient compu-
tational resources such that he can perform real-time analysis
and run necessary algorithms to geo-locate SUs.

III. THE DISCOVERED ATTACKS

An SU sends queries that contain its location to the database
to retrieve SAI. Thus, an attacker can immediately learn the
location of the SU by looking at his queries. Our further
investigation into the security of database-driven CRNs dis-
covers more subtle attacks, in which the attacker can obtain
the location of an SU without the knowledge of queries. In
what follows, we give the overview of the discovered attacks,
and present the detailed attack algorithm.

A. Attack Overview

Intuitively, when a PU is ON, and at the same time, an SU
could access to the PU’s channel, then the SU must be located
in the complement of the PU’s signal coverage. Otherwise, the
SU will cause wireless interference to the PU’s transmission.
Therefore, by looking at a series of SU’s access events, an
attacker can narrow down the location range of the SU by
intersecting the complements of different PUs’ coverage and
will eventually get an accurate estimation of the SU’s location.



Fig. 1 is a simple attack example that shows the SU’s loca-
tion can be inferred out after the SU accesses four channels.
Here, the unavailable area of a channel equals to the coverage
of the PU, and the available area is the complement of the
PU’s coverage. At the beginning, we use 0 to label all the
cells in the service area of the Database-driven CRN. At time
t1, the SU accesses to PU1’s channel ch1. Thus, the attacker
can infer that SU is located in cells belong to the complement
of the region covered by PU1. We increase the labels of those
possible cells of the SU about ch1 by 1. At time t2, the SU
accesses to PU2’s channel ch2. The attacker can then narrow
down the location range of the SU to the overlapping cells
covered by the intersection of the complement coverage of
PU1 and PU2. Similarly, we increase the label of the possible
cells of the SU about ch2 by 1. By following these steps for
another two accesses to PU3 and PU4. Only one cell whose
label is largest (i.e. 4) satisfies this condition, thus the SU is
located in this cell.
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Fig. 1. An example of PUCC attack
.

It should be noted that the attacker can not only use the SU’s
channel access events, but also use the SU’s channel enforced
switch events to geo-locate the SU. If an SU switches from
one channel to another due to the return of the PU (from OFF
to ON), the SU must be located within the coverage of the
PU. The attacker may use this observation to further facilitate
the localization of the SU.

B. Attack Algorithm

In this section, we propose our Spectrum Utilization based
Location Inferring (SULI) algorithm that can be used to
geo-locate SUs. First we define and formalize the attack
approaches into two cases as summarized below.

Primary User Coverage Complement Attack (PUCC):
Given PUk’s state is ON, we denote the event that at the time
t an SU accesses and uses channel chk as Event I, which
is denoted as Ek

t = (SU, t, chk). Event I indicates that the
possible location set S of SU is within the complement area
of the coverage of channel PUk, i.e.,

S ∈ C − Ck (1)

,where C and Ck refer to the BS covered region and the
coverage of PUk’s signal, respectively.

Algorithm 1: SULI Algorithm
Input: event sequence E = {e1, e2, . . . , el, . . .}, where el
could be Event I (SU, t, chk) or Event II
(SU, t, chk1 , chk2).
Output: the SU ’s possible location set S.
Initialization: Let SU ’s possible location set S = C.
Run:
while an event occurs about SU do

if the event is Event I then
PUCC(Ek

t )
else

ECS(Ek1→k2
t )

end if
end while
function PUCC(Ek

t )
if PUk’s state is ON at time t then
S ← S

∩
(C − Ck)

end if
end function
function ECS(Ek1→k2

t )
S ← S

∩
Ck

PUCC(Ek2
t )

end function

Enforced Channel Switch Attack (ECS): We denote the
event that an SU switches from channel chk1 to channel chk2

due to the state transition (from OFF to ON) of PUk1 as Event
II, which is denoted as Ek1→k2

t = (SU, t, chk1 , chk2). Event II
further introduces two situations. If the state of PUk2 is ON,
it can be inferred that the possible location set S of SU is
within the intersection of PUk’s coverage and the complement
of PUi’s coverage, i.e.,

S ∈ Ck1

∩
(C − Ck2) (2)

Otherwise, the SU is within the coverage of PUk, i.e.,

S ∈ Ck1 (3)

Based on the formalized models of attacks, we give Al-
gorithm 1. Let SU’s possible location set S start from C.
Thereafter, S shrinks according to the two cases discussed
above.

C. Experimental Evaluations

We setup the white space database by adopting the spectrum
availability information of Los Angles released on TVFool
[7], and implement all FCC restrictions on all TV towers.
In LA area, there are 129 channels totally, one of which is
shown in Fig.2. Then we extract the SAI from these data and
choose 5 sample regions of the scale of 75km×75km. The BS
covered region is divided into 100× 100 cells, and we set the
side length of each cell as 750m which is determined both by
the shadowing correlation [8] and the efficiency of spectrum
utilization [9]. We perform 20 Monte Carlo experiments by
randomly choosing different percentage of channels accessed
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Fig. 3. Evaluation Result of the Location Privacy Leakage
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Fig. 2. The coverage of KRCA located at 118.062291◦, 34.213338◦ with
a 1707.0 m TV tower, whose channel is ch35 and ERP is 1000.000 kW

by the secondary users during the presence of PU or enforced
channel switch.

We measure the privacy leaking based on spectrum utiliza-
tion. The results are classified into three categories: the Case
I (the good case located to less than 25 cells), the Case II
(located to 25 ∼ 500 cells), and the Case III (the bad case
located to more than 500 cells).

Table.I shows the inference results in the case that users
have traversed all the channels under the presence of PUs.
The result shows that the SUs could be located to 1 ∼ 2 cells
in Case I while could achieve the localization accuracy of
1 ∼ 5 cells. Fig.3-(a) further gives the proportion of different
cases for 5 data sets. It shows that, only one out of total 5 data
sets have the Case III, which means, given enough spectrum
utilization information, most users could be located with a
high accuracy.

We also investigate the situation when no enough spectrum
information is provided. We evaluate the average localiza-
tion performance under the different percentage of channels
accessed by SUs. In Fig.3-(b), it implies that, along with
the increasing percentage of used channels, the inference
accuracy could be improved significantly. Specifically, with
more than 50% channel information exploited, SUs could be
located to less than 100 cells. Fig.3-(c) shows the number of

dataset center location number of inferred locations
average case Case I

1 −117.46◦, 34.06◦ 2.1697 1.7098
2 −115.82◦, 34.06◦ 5.3505 2.3107
3 −117.46◦, 32.71◦ 2.2292 1.6761
4 −115.82◦, 32.71◦ 1.6661 1.5044
5 −116.78◦, 33.39◦ 2.1580 1.6279

TABLE I
INFERRED POSSIBLE LOCATION SET WITH ALL THE LEAKED

IDENTIFYING CHANNELS

exactly located SUs (located to only one cell) under different
percentage of used channels. It shows that more than 10%
regions will be exactly distinguished with only 40% channel
information is used.

In our experiments, in 4 data sets, around 80% SUs could be
located to less than 10 cells by using 25 or less channels. This
further demonstrates the practicality of the discovered attack.

IV. PRIVACY PRESERVING SPECTRUM RETRIEVAL AND
UTILIZATION FOR WHITE SPACE DATABASE

To thwart the previously defined three kinds of location
based attacks, in this section, we propose a Privacy Preserving
Spectrum Retrieval and Utilization for white space database,
which is coined as PriSpectrum. As shown in Fig.4, PriSpec-
trum is comprised of two modules, Private Spectrum Avail-
ability Information Retrieval (PSAIR) protocol and Private
Channel Utilization (PCU) protocol, which are designed to
provide privacy preserving functionality for database query
process as well as private spectrum utilization process. Basi-
cally, PriSpectrum serves as the frontend between the user and
whitespace database to provide privacy preserving function
without changing the current whitespace architecture as shown
in Fig. 4.

A. Private Spectrum Availability Information Retrieval Proto-
col

In this section, we first propose a novel PSAIR protocol,
which is based on Private Information Retrieval (PIR) tech-
nique. The basic idea of PSAIR is to allow an SU to retrieve
SAI information of DB without leaking his location informa-
tion. Then we will discuss the correctness and efficiency of
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the proposed scheme, the experiment result of PSAIR will be
shown in Section.V.

1) The Process of The PSAIR: Our basic idea is that SU
is only interested in the element mij of the cell cij , which is
the element located at i-th row and j-th column in the n× n
matrix M, but i and j should be kept confidential for DB. In
our protocol, an SU sends two vectors without leaking i and j
while the SU still could retrieve the SAI mij he requires. To
prevent the DB from guessing i and j the SU is interested in,
the SU blinds each element of two vectors with two different
blinding factors, which can later be removed by SUs. The
detailed protocol is described as follows:

• System Initialization: SU chooses a big prime number
p, then generates two random numbers b and d as
the blinding factors, where b, d ∈ Zp, then calculates
the inverse of b and d in Zp as b−1 and d−1. After
that, SU generates two n-dimensional random vectors
v⃗1 = (a1, a2, . . . , an) and v⃗2 = (c1, c2, . . . , cn). Here,
ak, ck <

√
p−

√
N−1

nN
√
N−1

, where n is the dimension number
of the vector or the dimension number of the SAI matrix
M, and N = 2K , K is the number of the channels.
Actually, N is also the upper bound of the element mij

in M, since each mij ∈ ZN .
• Query Blinding Phase: Given SU’s location cij , SU

needs to retrieve SAI mij . He processes v⃗1 and v⃗2 as

v⃗1
′ = (a′1, . . . , a

′
n) = N · v⃗1 + h⃗i

= (a1N, . . . , aiN + 1, . . . , anN)

v⃗2
′ = (c′1, . . . , c

′
n) = N · v⃗2 + h⃗j

= (c1N, . . . , cjN + 1, . . . , cnN)

,where h⃗i is a unit vector with the ith element is 1 and
others are 0. To hide the real value of v⃗1 and v⃗2, SU
blinds them by using two blind factors

u⃗1 = b · v⃗1′ mod p
= (ba1N, . . . , b(aiN + 1), . . . , banN) mod p

u⃗2 = d · v⃗2′ mod p
= (dc1N, . . . , d(cjN + 1), . . . , dcnN) mod p

Then, SU sends the blinded query Q = (u⃗1, u⃗2, t) to DB.
• Query Execution Phase: After DB gets Q, it computes

these two blinding vectors with the SAI matrix M, and

gets the query result g = u⃗1 · M · u⃗2
T without module

operation, where u⃗2
T is the transposition of vector u⃗2

Then DB sends g back to SU. We will show that this
operation could save the transmission cost a lot compared
with the direct download M.

• Result Recover Phase: To recover the SAI mij , SU
needs to remove the blind fact by multiplying g with
b−1 and d−1, g1 = b−1 · g · d−1. SU modules g1 with p
and N as mij = (g1 mod p) mod N .

Finally SU will choose an available channel chk based on mij

and the protocol we proposed in Section.IV.B.
2) Security and Efficiency Discussions: The general secu-

rity of PSAIR follows the scheme proposed in [10], which is
based on the Hidden Modular Group Order assumption. Since
we extend the scheme of [10] from single dimension to two
dimensions, we then prove its correctness by the following
theorem.

Theorem I Given u⃗1 and u⃗2 generated by following PSAIR
protocol proposed in Section IV. A, SU can retrieve the SAI
information on cell mij correctly.

Proof: For ease of presentation, we denote n× n matrix
M by the combination of the row vectors or column vectors
as

M =


r⃗1
r⃗2
...
r⃗n

 = [e⃗1
T , e⃗2

T , · · · , e⃗nT ]

where r⃗i and e⃗i, i ∈ {1, 2, . . . , n} are all row vectors, and e⃗i
T

is the transposition of the row vector e⃗i.
By following PSAIR protocol, the two blinding query

vectors generated by SU are u⃗1 and u⃗2, which could be
denoted as

u⃗1 = b · (Na1, Na2, . . . , Nai + 1, . . . , Nan)

= bN(a1, . . . , an) + b(0, . . . , 0, 1, 0, . . . , 0) = bNa⃗+ b⃗hi

u⃗2 = ·(c1N, c2N, . . . , cjN + 1, . . . , cnN)d

= (c1, . . . , cn)Nd+ (0, . . . , 0, 1, 0, . . . , 0)d = c⃗Nd+ h⃗jd

where h⃗i = (0, . . . , 0, 1, 0, . . . , 0) is a unit vector whose ith
element is 1. All the operations of u⃗1 and u⃗2 are in the field
of Zp. Thus the detailed expression of big number operation
executed by DB is

u⃗1 · M · u⃗T
2

= (bNa⃗+ b⃗hi) · [e⃗1T , e⃗2T , · · · , e⃗nT ] · (c⃗TNd+ h⃗T
j d)

= (bN [⃗ae⃗1
T , · · · , a⃗e⃗nT ] + br⃗i) · (c⃗TNd+ h⃗T

j d)

= bN [⃗ae⃗1
T , · · · , a⃗e⃗n ]⃗cTNd+ br⃗ic⃗

TNd+ bNa⃗e⃗j
T d+ bmijb

= b · (N [⃗ae⃗1
T , · · · , a⃗e⃗nT ]⃗cTN + r⃗ic⃗

TN +Na⃗e⃗j
T +mij) · d

(4)
In the follows, we denote (N [⃗ae⃗1

T , · · · , a⃗e⃗n ]⃗cTN + r⃗ic⃗
TN +

Na⃗e⃗j
T + Mij) as m′

ij . Since each aij and cij must be

less than
√
p−

√
N−1

nN(N−1) , without loss of generality, we denote
the biggest element among aij and cij as x, we could get



x <
√
p−

√
N−1

nN
√
N−1

. Furthermore, mij is an element in M, thus
mij ≤ N − 1. So m′

ij could be bounded as

m′
ij < N − 1 + 2nN(N − 1)x+ n2N2(N − 1)x2 < p (5)

Since m′
ij is in the modular field Zp, the user could recover

m′
ij correctly by query execution. Then we could get mij by

m′
ij mod N correctly.
Then, we evaluate the transmission cost of proposed scheme

by following theorem.
Theorem II Given n as the dimension of the matrixM and

p as the big prime chosen by the user, the transmission cost of
PSAIR (including uploading and downloading transmission)
is bounded by (2n+ 3)⌈log p⌉ bits.

Proof: In the blind query phase, SU will send two
blinding vectors u⃗1 and u⃗2 to DB. Since the element in the
blinding vectors ∈ Zp and the prime p is log p bit, thus the
size of two blinding vectors is less than 2n⌈log p⌉.

On the other hand, according to the proof of Theorem I, DB
will send back a big integer bm′

ijd to SU. Since b,m′
ij , d ∈ Zp,

the size of the big prime is less than 3⌈log p⌉.
So, the total transmission cost incurred by PSAIR is (2n+

3) log p bits.
The above theorem gives the transmission cost of the P-

SAIR protocol. If compared with k-anonymity based solutions
(e.g., query SAI information of k cells in a query) or direct
cache [11](e.g., downloading all the database to avoid future
query), PSAIR provided a bounded downstream transmission
overhead, which is much less than the whole database.

B. Private Channel Utilization (PCU) Protocol

In the previous section, we have presented PSAIR to achieve
private channel information retrieval. PSAIR only assures the
privacy of SAI query process. However, we have discussed
in Section III that the attacker could exploit the channel uti-
lization information to infer an SU’s location. In this section,
we will discuss how to prevent location privacy leaking and
thwart PUCC and ECS attack.

We propose Private Channel Utilization (PCU) protocol,
aiming at reducing the location privacy leaking during the
spectrum utilization process without changing the existing
CR access policy. PCU is motivated from the following
observations: 1. The location privacy of SUs will be leaked out
only if he accesses to a new channel, which means re-accessing
to used channel will not incur new privacy leaking. 2. The ex-
pected duration for each channel is naturally diversified. This
means that, given a fixed time interval, SUs who choose a more
stable channel will have less enforced channel transitions, and
thus have less privacy leaking. Based on this observation,
we could obtain two principles for spectrum utilization. In
particular, to reduce the location privacy leaking in database
driven CRN, SUs should choose the channels by following the
two principles below

• Used Channel First: The channel that has been accessed
before is prior to the one that is not accessed.

• Stable Channel First: The stable channel is prior to an
unstable channel.

With these two principles, we propose PCU algorithm as:
1) The Proposed PCU Algorithm: To follow the two prin-

ciple, an SU will initialize two lists: a used channel list Lu,
which records all of the channels SU has accessed before,
and a prediction list Lp, which records all the channels’
predicted duration. Here, predicted duration is the factor that is
introduced to reflect Stable Channel First principle. Basically,
predicated duration represents how long this channel will
be available in the future. We will discuss the details of
calculating expected duration in the next section.

Whenever an SU accesses the channel or make a channel
switch, SU will firstly try to find the most stable channel from
used channel list Lu. If no available channel in Lu, SU will
find the most expected stable channel chk in Lp. Further, SU
will update used channel list by including chk in Lu. For each
query, SU will update the prediction information in Lp by
considering the latest SAI query information. We summarize
the PCU algorithm in Algorithm 2.

Algorithm 2: The Proposed PCU Algorithm
Initialization: Let the used channel list Lu be ∅ and
initialize a prediction list Lp through a learning process.
Run:
while input a query result mij do

if there is an available channel ∈ Lu then
choose the most stable channel chk ∈ Lu.

else
choose the most stable channel chk ∈ Lp

put chk into Lu.
end if
Update Lp by learning.

end while

2) Leveraging Channel Prediction to Choose Most Stable
Channel: The remaining problem is how to choose most stable
channel from a channel candidate pool. An SU has no idea
about the state of the PUs. In stead, it only knows whether the
state of each channel chk in his cell is available or not. Thus,
SAI information of a channel chk will be the observation of an
SU about PUk. We model channel chk’s state as a continuous
Markov process with the state transition rate Q-matrix Qk,
which could represented as follows,

Qk =

[
−λk λk

µk −µk

]
(6)

, where λk denotes the transition rate from unavailable(0) to
available(1) and µk denote the transition rate from available(1)
to unavailable(0). Then, we obtain the state transition matrix

P k(t) = eQt =

[
pk00(t) pk01(t)
pk10(t) pk11(t)

]

=

[ µk
λk+µk

+ λk
λk+µk

e−(λk+µk)t, λk
λk+µk

− λk
λk+µk

e−(λk+µk)t

µk
λk+µk

− µk
λk+µk

e−(λk+µk)t, λk
λk+µk

+ µk
λk+µk

e−(λk+µk)t

]



As discuss above, the probability of a channel chk changed
from available to available is pk11. We could obtain the expec-
tation of a channel’s available duration as:

E[t1] = tp11 + 2tp211 + · · · =
tp11

(1− p11)2
(7)

This equation shows that, when an SU needs to choose a
channel in a candidate pool, he needs to choose a channel
chk with the largest probability pk11 to maximize E[t1].

The next question is how to calculate probability pk11 in our
case. If the duration of channel availability and unavailability
follows exponential distributions [12], we could estimate λk

and µk by maximum likelihood estimation as follows

λk =
1

N

N∑
1

σ(akij = 1) (8)

µk =
1

N

N∑
1

σ(akij = 0) (9)

Here, akij refers to the availability information of chk in cell
cij , N is the total number of queries, σ(·) is a function that
equals 1 when function condition is satisfied, otherwise equals
0. According to (8), we could update µ in each query, and thus
we could choose a channel with a maximum probability.

V. IMPLEMENTATION AND EVALUATION

In this section, we evaluate the effectiveness and efficiency
of the proposed PriSpectrum from following aspects: 1) Imple-
mentation and the performance of the proposed PriSpectrum;
2) Effectiveness of PriSpectrum.

A. Implementation of PSAIR

We implement the proposed PSAIR protocol to achieve
Private Spectrum Query Module on OpenSSL C++ big integer
library. The evaluation is performed on both of computer and
mobile device. The implementation platform includes a 64-
bit computer with Intel i5 CPU of 2.8 GHz and 4G memory
and an android smart phone with a Qualcomm MSM7201A
528MHz CPU and 192MB RAM,512MB ROM. We evaluate
the scalability of the PSAIR protocol under the different
parameter setting. In the experiment, we set big prime p as
2048 bits and evaluate the efficiency of three phases under
different number of cells and channels as shown in Fig.5.

1) Cost of Blinding Vector Generation on User Side: The
first metric is blind vector, which is generated at the user side.
We evaluate the cost of blinding vector generation process
by evaluating the computation latency. Fig. 5(a) shows the
relationship between the blinding vector generation time and
the number of cells on a smart phone. It is observed that
the computation latency increases from 0.7s to 1.4s when the
number of cells increasing from 1002 to 3002. It demonstrates
a good scalability of PSAIR. Note that, this process could be
performed during the offline phase, which could further reduce
the computation latency of private spectrum query.

2) Cost of Private Query Execution at Server Side: The
second metric is the cost of big integer execution at server
side. From Fig. 5(b), it is observed that the computation cost
of the server is linear to the number of cells (n2). It is also
noticed that the number of channels that also have a direct
impact on the execution cost of server side. When the number
of channels are 32 or 64, the computation cost is very close.
However, when the number of channels are increased to 128,
the computation cost is increased due to the increase of the
computation complexity. In general, the cost on the server
could be finished in less than 200ms in the experiments.

3) Cost of SAI Recovery at User Side: The last performance
metric evaluated is the cost of SAI recovery at user’s side,
which needs to be performed during the online phase. Fig.5-(c)
shows that the execution latency keep relatively stable along
with the increase of the number of cells. In particular, SU only
needs to spend less than 20 ms even for the largest considered
region.

We also evaluate the performance of PSAIR running on PC
(Intel CPU i5 of 2.8 GHz) and obtain the results in Table.II.
In general, PSAIR achieves a much better performance on PC
than the smart phone. The number of channels affects little
on the blinding vector generation cost and SAI recovery cost,
but it will inevitably increase the cost on the side of server.
However, the cost of PSAIR on the server is no more than
120ms, that also demonstrates the efficiency of the PSAIR.

4) Discussions of Transmission Overhead: To demonstrate
the transmission overhead, we compare PSAIR with a naive
solution, in which SU locally cache the map without any DB
query and thus achieve location privacy. In this experiment,
it is shown that the SAI size for a given region is more than
40MB. However, if SU launch a query by following a PSAIR
protocol, the overhead could be reduced to 1900 bits, most of
which is contributed by cryptographic blind factors. Since it is
a bounded transmission cost, the increase of number of cells
will not further incur a higher transmission overhead. This
further demonstrate the scalability of the proposed solution.

The above discussion demonstrates the efficiency of PSAIR
on both sides of SU and server in terms of computation latency.
Since the computation cost of PCU is negligible on SU’s side,
we will evaluate the effectiveness of PCU on protecting SU’s
location privacy.

B. Evaluate of Private Spectrum Utilization Module (PCU)

We evaluate the private spectrum utilization module by set-
ting up an simulation environment with 10000 SUs uniformly
distributed in 10000 cells. Dataset 4 which is faced with
the most severe privacy threat is chosen to provide spectrum
access information for SUs. The simulation is proceeded
for 15 days with the time slot as one minute and the data
is collected for every minute. Given the fixed number of
SUs in the considered regions, we simulate an area with
different user density by tuning the service limitation number,
which is originally set to τ = 40 and then increased later.
To evaluate the effectiveness of private spectrum utilization
module, we implement PCU algorithm with or without Markov



bit number of p blinding vector generation cost(ms) server computation cost(ms) SAI recovery cost(ms)
K =32 K=64 K=128 K =32 K=64 K=128 K =32 K=64 K=128

210 4.505 4.506 4.151 17.517 24.254 38.480 0.056 0.064 0.059
211 12.907 12.929 12.761 24.030 34.439 62.166 0.163 0.162 0.169
212 38.700 38.289 38.048 42.012 65.783 117.382 0.563 0.558 0.567

TABLE II
EVALUATION OF PSAIR UNDER THE NUMBER OF CELLS n2 = 2002 ON PC INTEL CPU I5 OF 2.8 GHZ
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Fig. 5. Evaluation of Private Spectrum Query Module

prediction. We compare these two kinds of algorithms with the
random channel selection, which randomly chooses a channel
to access. The simulation results are shown in Fig. 6.

As introduced in Section IV.B, more channels used will lead
to more location information leaking. In Fig. 6-(a), we measure
the number of channels have been used before. It is observed
that PCU algorithm achieves a significant reduction in terms
of number of used channels. Compared with random selection
strategy which has used almost 90 channels for 15 days, the
number of used channels is bounded to 10 in average. It is
also observed that PCU with the Markov prediction incur less
used channels than PCU without Markov prediction, which is
consistent with our design goal.

The second metric is measurement of location privacy
leaking (or geo-location accuracy), which is measured by the
size of possible location set. We show the size of possible
location set under three channel selection algorithms in Fig. 6-
(b). It is observed that the random selection algorithm can
enable the attacker to localize a user in less than 100 cells.
However, under the protection of PCU algorithms, the attacker
can only geo-locate an SU in more than 3000 cells (without
prediction) or more than 4000 cells (with prediction).

In Fig. 6-(c), we investigate the number of SUs who are
located into less than 25 cells. It shows that in random
selection, there are about 5000 users (half of total number) will
be under the risk of being located to less than 25 cells after
just 4 days. However, if having PCU algorithm, the number
of SUs being located to 25 cells is significantly reduced. In
Fig. 6-(d), we illustrate an extreme case that the number of
SUs are geo-located into a single cell. It is shown that there
are 15 percent users that can be located to a cell while almost
no user is located by a cell if PCU is in place.

Fig. 6-(e) shows the distribution of inference results with
different channel selection algorithm. It shows that, under the

attack, most of SUs with random channel selection algorithm
could be located to the accuracy of less than 500 cells.
However, with PCU, most of SUs are located to larger than
500 cells. This further demonstrates the effectiveness of PCU
algorithm. We also investigate the impact of service limitation
τ towards the performance of PCU in Fig. 6-(f). It is shown
that the smaller the τ is, the better PCU performs. In other
words, PCU will achieve a good performance in an area with
a low user density, i.e. a rural area.

From simulations, it is shown that the proposed PriSpec-
trum could well protect the location privacy of SUs with a
reasonable cost. It is also observed that PCU with prediction
has a better performance than PCU without prediction. This
further demonstrates the effectiveness of PCU.

VI. RELATED WORKS

K-anonymity is a widely used privacy protection technique
in LBS [4], [5]. K-anonymous location privacy means that
the user’s location is indistinguishable from at least K-1
other users. To achieve K-anonymous location privacy, one
common approach is to incorporate a trusted server, called
the anonymizer who is responsible for removing the user’s
ID and selecting an anonymizing spatial region (ASR) (or
cloaking area) containing the user and at least K − 1 users
in the vicinity. However, K-anonymity does not work well in
database driven CRNs due to lack of the trusted server.

Collaborative privacy protection such as mix-zone is an
alternative approach to k-anonymity in a peer-to-peer fashion
[6]. Similar to mixzone based cooperative location privacy
in VANET, several SUs could collaborate to change their
channels and, thus confuse the mapping of accessed channels
before switch and after switch. However, such a collaborative
channel switch may not work well in CRNs because it requires
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unnecessary channel switches and thus reduce the Quality-of-
Service of SUs.

Other research on security issues in database driven CRNs
include the latest IETF draft on protocol to access white space
database: security considerations, which published on July 9,
2012 [13]. In this draft, it discusses the impersonation attacks
towards master device, database and man-in-the-middle-attack
between SUs and DB. It also suggested using Transportation
Layer Security (TLS) protocol to thwart different attacks,
i.e. the primary user emulation attack [14]. However, the
location privacy concern has not been noticed by [13] in either
spectrum sensing of [15] or database-driven CRN.

VII. CONCLUSION AND FUTURE WORK

In this paper, we identify a new location privacy attack
towards database driven CRNs, which enables the attacker
to geo-locate an SU by observing the spectrum he has used.
We demonstrate the effectiveness of the discovered attack on
spectrum availability information in the area of LA released by
FCC. We also propose a novel PriSpectrum scheme to thwart
various location privacy attacks. The extensive simulations
and experiments well demonstrate the effectiveness and the
efficiency of the proposed scheme. Our future work includes
other security issues in database-driven CRNs.
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